MANUAL: Hand Held Automatic Dual Pressure Nozzles ### Mid-Force, CAFS-Force and Dual-Force ### INSTRUCTIONS FOR SAFE OPERATION AND MAINTENANCE **▲WARNING** Read instruction manual before use. Operation of this nozzle without understanding the manual and receiving proper training can be dangerous and is a misuse of this equipment. Call 800-348-2686 with any questions. This instruction manual is intended to familiarize firefighters and maintenance personnel with the operation, servicing and safety procedures associated with the Mid-Force and Dual-Force fire fighting nozzles. This manual should be kept available to all operating and maintenance personnel. ### **A DANGER** ### PERSONAL RESPONSIBILITY CODE The member companies of FEMSA that provide emergency response equipment and services want responders to know and understand the following: - Firefighting and Emergency Response are inherently dangerous activities requiring proper training in their hazards and the use of extreme caution at all times - It is your responsibility to read and understand any user's instructions, including purpose and limitations, provided with any piece of equipment you may be called upon to use. - 3. It is your responsibility to know that you have been properly trained in Firefighting and /or Emergency Response and in the use, precautions, and care of any equipment you may be called upon to use. - 4. It is your responsibility to be in proper physical condition and to maintain the personal skill level required to operate any equipment you may be called upon to use. - It is your responsibility to know that your equipment is in operable condition and has been maintained in accordance with the manufacturer's instructions. - Failure to follow these guidelines may result in death, burns or other severe injury. Fire and Emergency Manufacturers and Service Association P.O. Box 147, Lynnfield, MA 01940 • www.FEMSA.org TASK FORCE TIPS, INC. MADE IN USA • www.tft.com 3701 Innovation Way, Valparaiso, IN 46383-9327 USA 800-348-2686 • 219- 462-6161 • Fax 219-464-7155 ### **Table Of Contents** - 1.0 MEANING OF SIGNAL WORDS - 2.0 GENERAL INFORMATION - 2.1 VARIOUS MODELS AND TERMS - 2.2 COLOR CODED VALVE HANDLE COVERS - 2.3 NOZZLE COUPLING - 2.4 MECHANICAL SPECIFICATIONS - 3.0 FLOW CHARACTERISTICS - 4.0 NOZZLE CONTROLS - 4.1 FLOW CONTROL - 4.1.1 LEVER TYPE FLOW CONTROL - 4.1.2 TWIST SHUTTOFF - 4.1.3 TIP ONLY NOZZLES - 4.2 PATTERN AND FLUSH CONTROL - 4.2.1 PATTERN CONTROL - 4.2.2 FLUSH CONTROL - 4.3 STANDARD/LOW PRESSURE KNOB - 5.0 USE OF MID-FORCE, CAFS-FORCE and DUAL-FORCE NOZZLES - 6.0 CAFS-FORCE 1 & CAFS-FORCE 2 - 7.0 FIELD INSPECTION - 8.0 WARRANTY - 9.0 ANSWERS TO YOUR QUESTIONS - 10.0 NOZZLE FLOW CHARTS - 11.0 INSPECTION CHECKLIST ### 1.0 MEANING OF SAFETY SIGNAL WORDS A safety related message is identified by a safety alert symbol and a signal word to indicate the level of risk involved with a particular hazard. Per ANSI standard Z535.6-2006, the definitions of the four signal words are as follows: **A DANGER** DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury. **▲**WARNING WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury. **ACAUTION** CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. NOTICE NOTICE is used to address practices not related to personal injury. ### 2.0 GENERAL INFORMATION The Task Force Tips MID-FORCE, CAFS-FORCE and DUAL-FORCE nozzles are designed to provide excellent performance under most fire fighting conditions. Their rugged construction is compatible with the use of fresh water (see section 7.0 for saltwater use) as well as fire fighting foam solutions. Other important operating features are: - · Switchable from standard operation to low pressure - Automatic pressure regulation (meets NFPA 1964 automatic nozzle pressure requirements) - Slide valve with valve handle detent flow control for excellent stream quality at all valve positions - · Quick-acting pattern control from straight stream to wide fog - "Power fog teeth" for full-fill fog - "Gasket grabber" inlet screen to keep large debris from entering nozzle - · Easily flushable while flowing to clear trapped debris - TFT's five-year warranty and unsurpassed customer service **AWARNING** This equipment is intended for use by trained personnel for firefighting. Their use for other purposes may involve hazards not addressed by this manual. Seek appropriate guidance and training to reduce risk of injury. **AWARNING** Nozzle reaction will vary as supply conditions change: such as opening or closing other nozzles, hose line kinks, changes in pump settings, etc. Changes in spray pattern or flushing will also affect nozzle reaction. The nozzle operator must always be prepared in the event of those changes. Failure to restrain nozzle reaction can cause firefighter injury from loss of footing and/ or stream protection. If nozzle gets out of control or away from operator, retreat from nozzle immediately. Do not attempt to regain control of nozzle while flowing water. Injury from whipping can occur. Water is a conductor of electricity. Application of water solutions on high voltage equipment can cause injury or death by electrocution. The amount of current that may be carried back to the nozzle will depend on the following factors: Voltage of the line or equipment; Distance from the nozzle to the line or equipment; Size of the stream; Whether the stream is solid or broken; Purity of the water1 Fire streams are capable of injury and damage. Do not direct water stream to cause injury or damage to persons or property. $Do \, not \, couple \, a luminum \, to \, brass. \, Dissimilar \, metals \, coupled \, together \, can \, cause \, galvanic \, corrosion \, that \, can \, result \, in \, inability \, to \, unscrew \, threads \, or \, complete \, loss \, of \, thread \, engagement.$ The nozzle may become damaged if allowed to freeze while containing water. Always drain after use to avoid damage and possible loss of use. ¹ The Fire Fighter and Electrical Equipment, The University of Michigan Extension Service, Fourth Printing 1983. Page 47. ### 2.1 VARIOUS MODELS AND TERMS | SERIES | FLOW | RANGE | NOMINAL I | PRESSURE | STANDARD COUPLING* | |-------------|--------|----------|-----------|----------|--------------------| | | GPM | L/min | PSI | BAR | | | MID-FORCE | 70-200 | 265-760 | 100 | 7 | 1-1/2 NH | | MID-FORCE | 70-200 | 265-760 | 75 | 5 | 1-1/2 NH | | DUAL-FORCE | 95-300 | 360-1150 | 100 | 7 | 1-1/2 NH | | DUAL-FORCE | 95-300 | 360-1150 | 75 | 5 | 1-1/2 NH | | CAFS-FORCE1 | 70-200 | 265-760 | 75 | 5 | 1-1/2 NH | | CAFS-FORCE2 | 95-250 | 360-950 | 75 | 5 | 1-1/2 NH | ^{*} Other threads, coupling sizes, or connector styles can be specified at time of order. Nozzle must be mated to a hose line with matched threads. Mismatched or damaged threads may cause nozzle to leak or uncouple from hose under pressure and could cause injury. FIGURE 1 COMMON MODELS AND TERMS 4 ### 2.2 COLOR CODED VALVE HANDLE AND PISTOL GRIP The TFT ULTIMATIC, MID-MATIC & HANDLINE with lever type valve handles are supplied with black valve handle covers and pistol grips. The handle covers and pistol grips are available from TFT in various colors for those departments wishing to color code the nozzle to the discharge controls. A colored handle cover set will be sent upon receipt of the warranty card by TFT. Your department's name can also be engraved on the covers (see warranty card for more information). Handle covers are replaceable by removing the four screws that hold the handle covers in place. Use a 3/32" allen wrench when replacing screws. Pistol grip is replaceable by following TFT instruction sheet LTT-108. For standardization NFPA 1901 (A-4-9.3) recommends the following color code scheme: Preconnect #1 or Bumper Jump Line Orange Preconnect or discharge #2 Red Preconnect or discharge #3 Yellow White Preconnect or discharge #4 Preconnect or discharge #5 Blue Preconnect or discharge #6 **Black** Preconnect or discharge #7 Green Foam Lines Red w/ White border (Red/White) ### Other Colors Available: - Grav - Pink - Purple - Tan ### 2.3 NOZZLE COUPLING Rocker lug 1-1/2" NH full-time swivel is standard on models with lever type flow control. The coupling is the same on other models except it does not swivel. Other threads such as 1-1/2" NPSH can be specified at time of order. Nozzle must be mated to a hose line with matched threads. Mismatched or damaged threads may cause nozzle to leak or uncouple from hose under pressure and could cause injury. ### 2.4 MECHANICAL SPECIFICATIONS | Maximum nozzle inlet pressure with valve shutoff | 300 psi | 21 bar | |--|---|--------------| | Operating temperature range of fluid | 33 to 120° F | 1 to 50° C | | Storage temperature range | -40 to 150° F | -40 to 65° C | | Materials used | Aluminum 6000 series hard anoc
stainless steel 300 series, nylon | | ### 3.0 FLOW CHARACTERISTICS The graphs in figure 2 show the typical performance of MID-FORCE, CAFS-FORCE and DUAL-FORCE nozzles. An inadequate supply of nozzle pressure and/or flow will cause an ineffective stream and can result in injury, death or loss of property. See flow chart in section 8.0 or call 800-348-2686 for assistance. Failure to restrain nozzle reaction can cause firefighter injury from loss of footing and/or stream protection. Nozzle reaction will vary as supply conditions change: such as opening or closing other nozzles, hose line kinks, changes in pump settings, etc. Changes in spray pattern or flushing will also affect nozzle reaction. The nozzle operator must always be positioned to restrain the nozzle reaction in the event of those changes. Injury from whipping can occur. If nozzle gets out of control or away from
operator, retreat from nozzle immediately. Do not attempt to regain control of nozzle while flowing water. Fire streams are capable of injury and damage. Do not direct water stream to cause injury or damage to persons or property. ### **CAFS-Force 1** The charts in section 10.0 of this document give specific examples of maximum flow rates for particular situations. Friction losses may vary due to differences in hose construction resulting in flows different than those shown. For situations or lengths of hose not listed on the chart, approximate flows can be calculated using conventional hydraulics. NOTE: Within the flow range, the nozzle inlet pressure may be approximated to be 100 PSI, when used in the standard pressure mode, or 75 PSI in low pressure mode. New DUAL-FORCE 75/45 PSI (5/3 BAR) meets NFPA - For Nozzles Manufactured after December 1, 200 ### **CAFS-Force 2** FIGURE 3 - NOZZLE PERFORMANCE (on pages 6 - 7) ### 4.0 NOZZLE CONTROLS ### 4.1 FLOW CONTROL ### 4.1.1 LEVER TYPE FLOW CONTROL On models that use a lever type valve handle, the nozzle is shut off when the handle is fully forward. The valve handle has six detent flow positions. These detent positions allow the nozzle operator to regulate the flow of the nozzle depending on the need or what can be safely and effectively handled. TFT recommends the use of a pistol grip for easier handling. For additional stress reduction, a hose rope or strap may also be used. This permits more effective use and ease of advancement, while minimizing strain and fatigue. ### 4.1.2 TWIST SHUTTOFF On models that use a twist flow control, the valve is opened or closed by rotating the valve ring. Rotating the ring clockwise (as seen from the operating position behind the nozzle) closes the valve, while counterclockwise rotation opens it. Detents are provided at four intermediate positions and the position of the valve is shown by the exposed valve position label. ### 4.1.3 TIP ONLY NOZZLES Tip only nozzles have NO shut off valve contained within the nozzle and MUST be used with a separate ball valve attached to the nozzle. ### 4.2 PATTERN AND FLUSH CONTROL ### 4.2.1 PATTERN CONTROL TFT's ULTIMATIC, MID-MATIC and HANDLINE have full pattern control from straight stream to wide fog. Turning the STREAM SHAPER clockwise (as seen from the operating position behind the nozzle) moves the SHAPER to the straight stream position. Turning the SHAPER counterclockwise will result in an increasingly wider pattern. Since the stream trim point varies with the flow, the stream should be "trimmed" after changing the flow to obtain the straightest and farthest reaching stream. To properly trim a stream, first open the pattern to a narrow fog. Then close the stream to parallel to give maximum reach. **NOTE: Turning the shaper further forward will cause stream crossover and reduce the effective reach of the nozzle.** The nozzle reaction is greatest when the shaper is in the straight stream position. The nozzle operator must be prepared for a change in reaction as the pattern is changed. ### 4.2.2 FLUSH CONTROL MID-FORCE and DUAL-FORCE MODELS Small debris passes through the gasket grabber and may get caught inside the nozzle. This trapped material will cause poor stream quality, shortened reach and reduced flow. To remove this trapped debris the nozzle can be flushed as follows; while still flowing water, turn the SHAPER counterclockwise past the full fog position (increased resistance will be felt on the SHAPER as the nozzle goes into flush). This will open the nozzle allowing debris to pass through. Rotate the SHAPER clockwise and out of flush to continue normal operation. During flush the nozzle reaction will decrease as the pattern becomes wider and the pressure drops. The nozzle operator must be prepared for an increase of nozzle reaction when returning the nozzle from the flush position to retain control of the nozzle. FIGURE 3 - GASKET GRABBER Large amounts of debris can reduce the flow of the nozzle resulting in an ineffective flow. In the event of a blockage it may be necessary to retreat to a safe area, uncouple nozzle and remove debris. ### 4.3 STANDARD/LOW PRESSURE KNOB MID-FORCE & DUAL-FORCE For situations where the standard pressure setting at the nozzle is impractical, the MID-FORCE or DUAL-FORCE may be switched to a low pressure mode. In the low pressure mode the nozzle pressure is reduced by about 50% while maintaining a usable stream and increasing the flow. The nozzle operator must be prepared for a change in reaction when changing modes. See figure 2 or the flow chart in section 10.0 for actual performance. To switch to the low pressure mode, shut off water flow with valve and turn knob at front of nozzle (see figure 4) counterclockwise (when viewed from front). Reopen valve to flow water at reduced pressure. Repeat the process, except turn knob clockwise, to return to standard pressure operation. Figure 4.3 ### 5.0 USE OF MID-FORCE and DUAL-FORCE NOZZLES IT IS THE RESPONSIBILITY OF THE INDIVIDUAL FIRE DEPARTMENT OR AGENCY TO DETERMINE PHYSICAL CAPABILITIES AND SUITABILITY FOR AN INDIVIDUAL'S USE OF THIS EQUIPMENT. Many factors contribute to the extinguishment of a fire. Among the most important is delivering water at a flow rate sufficient to absorb heat faster than it is being generated. The flow rate depends largely on the pump discharge pressure and hose friction loss. The pump discharge pressure may be found by use of the chart in section 10.0. It can also be calculated using a hydraulic equation such as: Within its flow range, the nozzle pressure (NP) of the MID-FORCE or DUAL-FORCE nozzle may be approximated as 100 or 75 PSI in the standard mode. For additional information on calculating specific hose layouts, consult an appropriate fire service training manual, A Guide to Automatic Nozzles, or call TFT's "Hydraulics Hotline" at 800-348-2686. PDP = NP + FL + DL + EL **PDP** = Pump discharge pressure in PSI NP = Nozzle pressure in PSI FL = Hose friction loss in PSI **DL** = Device loss in PSI EL = Elevation loss in PSI IT IS THE RESPONSIBILITY OF THE INDIVIDUAL FIRE DEPARTMENT OR AGENCY TO DETERMINE PHYSICAL CAPABILITIES AND SUITABILITY FOR AN INDIVIDUAL'S USE OF THIS EQUIPMENT. ### 6.0 CAFS-FORCE 1 & CAFS-FORCE 2 The CAFS-FORCE 1 and CAFS-FORCE 2 nozzles are optimized for use with compressed air foam systems, CAFS. They have a streamlined flow path with no gasket grabber. The CAFS-FORCE nozzles have two settings: Standard pressure/Water and Low Pressure/CAFS. See Figure 5. The CAFS-FORCE tip can be removed to use the valve as a smoothbore. See Section 3.0 Flow Characteristics for CAFS-FORCE Nozzle flow characteristics. Hose handling techniques with compressed air foam (CAF) differ considerably from liquid filled hoses as a result of the added energy stored by pressurized air. The authority having jurisdiction must establish safe CAF operational procedures and insure appropriate training. Use of compressed air foam (CAF) with hand held nozzles can cause sudden surges in nozzle reaction force resulting in risk of injury or death from loss of footing or hose whipping. Be prepared for sudden changes in nozzle reaction caused by: Slug loading (Loss of foam concentrate sends slugs of air and water into the nozzle) Sudden release of built-up pressure in the hose when opening a nozzle Knob In Standard Pressure Water Mode Knob In Low Pressure CAFS Mode Figure 6 ### 7.0 FIELD INSPECTION TFT's MID-FORCE, DUAL-FORCE and CAFS-FORCE are designed and manufactured to be damage resistant and require minimal maintenance. However, as the primary fire fighting tools upon which your life depends, they should be treated accordingly. Use with saltwater is permissible provided nozzle is thoroughly cleaned with fresh water after each use. The service life of the nozzle may be shortened due to the effects of corrosion and is not covered under warranty. Nozzle must be inspected for proper operation and function according to inspection checklist on the last page before each use. Any nozzle that fails inspection is dangerous to use and must be repaired before using. Performance tests shall be conducted on the Mid-Force, Dual-Force and CAFS-Force nozzle after a repair, or anytime a problem is reported to verify operation in accordance with TFT test procedures. Consult factory for the procedure that corresponds to the model and serial number of the nozzle. Any equipment which fails the related test criteria should be removed from service immediately. Troubleshooting guides are available with each test procedure or equipment can be returned to the factory for service and testing. Factory service is available with repair time seldom exceeding one day in our facility. Factory serviced nozzles are repaired by experienced technicians to original specifications, fully tested and promptly returned. Any returns should include a note as to the nature of the problem, who to reach in case of questions and if a repair estimate is required. Repair parts and service procedures are available for those wishing to perform their own repairs. | TFT Item# | Title | |-----------|--| | LHM-020 | Mid-Matic, Mid-Force, Metro1 & CAFS-Force1 Service Procedure | | LIH-020 | Handline, Dual-Force, Metro2 & CAFS-Force2 Service Procedure | Any alterations to the nozzle and its markings could diminish safety and constitutes a misuse of this product. All Task Force Tip nozzles are factory lubricated with high quality silicone grease. This lubricant has excellent washout resistance and long term performance. If your department has unusually hard or sandy water, the moving parts may be affected. Foam agents and water additives contain soaps and chemicals that may break down the factory lubrication. The moving parts of the nozzle should be checked on a regular basis for smooth and free operation, and signs of damage. IF THE NOZZLE IS OPERATING CORRECTLY, THEN NO
ADDITIONAL LUBRICATION IS NEEDED. Any nozzle that is not operating correctly should be immediately removed from service and the problem corrected. ### **8.0 WARRANTY** Task Force Tips, Inc., 3701 Innovation Way, Valparaiso, Indiana 46383-9327 ("TFT") warrants to the original purchaser of its nozzles and other equipment ("equipment"), and to anyone to whom it is transferred, that the equipment shall be free from defects in material and workmanship during the five (5) year period from the date of purchase. TFT's obligation under this warranty is specifically limited to replacing or repairing the equipment (or its parts) which are shown by TFT's examination to be in a defective condition attributable to TFT. To qualify for this limited warranty, the claimant must return the equipment to TFT, at 3701 Innovation Way, Valparaiso, Indiana 46383-9327, within a reasonable time after discovery of the defect. TFT will examine the equipment. If TFT determines that there is a defect attributable to it, TFT will correct the problem within a reasonable time. If the equipment is covered by this limited warranty, TFT will assume the expenses of repair. If any defect attributable to TFT under this limited warranty cannot be reasonably cured by repair or replacement, TFT may elect to refund the purchase price of the equipment, less reasonable depreciation, in complete discharge of its obligations under this limited warranty. If TFT makes this election, claimant shall return the equipment to TFT free and clear of any liens and encumbrances. This is a limited warranty. The original purchaser of the equipment, any person to whom it is transferred, and any person who is an intended or unintended beneficiary of the equipment, shall not be entitled to recover from TFT any consequential or incidental damages for injury to person and/or property resulting from any defective equipment manufactured or assembled by TFT. It is agreed and understood that the price stated for the equipment is in part consideration for limiting TFT's liability. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above may not apply to you. TFT shall have no obligation under this limited warranty if the equipment is, or has been, misused or neglected (including failure to provide reasonable maintenance) or if there have been accidents to the equipment or if it has been repaired or altered by someone else. THIS IS A LIMITED EXPRESS WARRANTY ONLY. TFT EXPRESSLY DISCLAIMS WITH RESPECT TO THE EQUIPMENT ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. THERE IS NO WARRANTY OF ANY NATURE MADE BY TFT BEYOND THAT STATED IN THIS DOCUMENT. This limited warranty gives you specific legal rights, and you may also have other rights which vary from state to state ### 9.0 ANSWERS TO YOUR QUESTIONS We appreciate the opportunity of serving you and making your job easier. If you have any problems or questions, our toll-free "Hydraulics Hotline", 800-348-2686, is normally available to you 24 hours a day, 7 days a week. STANDARD PRESSURE MODE **LOW PRESSURE MODE** Ш Ш STD Ъ | |) ft. | 4 | 68 22 | 119 | 153 56 | 182 70 | 205
84 | 223 | | | |---------------------|-------------|-----|----------------|-------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------| | ш | 250 | STD | 22
8 | 34 | 75 | 113 57 | 151 78 | 187
97 | 222 113 | 1 : | | HOSE | #: | LP | 75 24 | 128
45 | 167 | 198 | 220 95 | 1 : | 1 : | 1 1 | | | 200 | STD | 22 8 | 35
15 | 79 | 122
62 | 168
87 | 212 109 | 1 : | | | 2 | ft. | LP | 82 27 | 141
51 | 184 72 | 213 | 1 : | 1 | 1 : | 1 : | | | 150 | STD | 22 8 | 36 | 84 | 135 | 196 101 | 1 : | 1 : | 1 : | | | ff. | LP | 54 | 91 30 | 117 40 | 138 50 | 158 58 | 175 | 189 75 | 203 | | SE | 250 | STD | 21 | 31 | 63 | 19 | 114 57 | 136 70 | 157
81 | 176 | | HO | ff. | LP | 60 | 100 33 | 129 45 | 152 56 | 174
66 | 192 76 | 207 | 221 96 | | 3/4" | 200 | STD | 21 8 | 32
4 | 67
32 | 97 | 125 | 151 78 | 175
91 | 198 102 | | 3/ | ff. | ГР | 65 21 | 111 38 | 143 52 | 172 65 | 195
77 | 213 | 228 102 | 1 1 | | 1 | 150 | STD | 21 8 | 32 ⁴ ⁺ | 72 34 | 108 54 | 141 72 | 174
90 | 204 105 | 1 1 | | Ī | Ħ. | LP | 46 | 75 24 | 97
32 | 114 39 | 130 46 | 143 52 | 156 58 | 168 63 | | SE | 250 | STD | 21 | 28 | 55 | 77
37 | 96 47 | 112 57 | 128 65 | 142 73 | | HOS | ft. | LP | 50 16 | 83 27 | 107 36 | 126
44 | 143 52 | 159 59 | 173 | 186 72 | | 1/2" | 200 | STD | 21 | 29 | 59 27 | 84
04 | 105 52 | 124 63 | 141 73 | 158
82 | | | ft. | LP | 55 | 93 | 121
42 | 143 52 | 163 | 180 | 196 78 | 209
87 | | | 150 | STD | 24
8 | 31 | 65 | 93
45 | 117 59 | 140 72 | 162
84 | 183
94 | | NOIT | | | 20 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | | FLOW (GPM) REACTION | | | (IS | d) 38 | inss: | BBE | ARGE | ISCH) | O AN | IUG | Changing to Low Pressure mode will typically increase nozzle reaction. CAUTION: (1) Number on top in each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) in Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. STANDARD PRESSURE MODE LOW PRESSURE MODE Ш 7 bar Ъ | FLOW (LPM) REACTION | (7) | 38 m | E | 38mm HOSE | SE | | 4 | 45mm | | HOSE | SE | | Ũ | 50mm | | HOSE | SE | | |---------------------|---------------|------------------|---------------|---------------|---------------|-----------------|---------------|---------------|------------------|------------------|---------------|------------------|------------|---------------|---------------|---------------|------------------|---------------| | 7 | 45 | 45M | M09 | Σ | 75M | Σ | 45M | Σ | 60M | Σ | 75M | Σ | 45M | Σ | 60M | Σ | 75M | Σ | | | 7 bar | LP П | | 3.5 | 80 4 | 210
8 | 80 | 190 | 80 % | 175
6 | 8 4 | 245 | 8 4 | 225 | 80 % | 205
8 | 8 4 | 310 | 8 4 | 285 | 8 4 | 225 | | 5.2 | 115
6 | 350 | 110 | 315 | 105 | 285 | 8 0 | 420 | 120
6 | 380 | 115 0 | 345
14 | 135 | 535 23 | 130 | 485 20 | 130 | 450 | | 2.0 | 245
14 | 460 | 225 | 405 | 210 | 365 | 275 | 540 24 | 255 | 490 20 | 240 | 445 | 320 | 695 | 300 | 630 29 | 285 | 580 25 | | 9'8 | 350 | 540 24 | 320 | 475 20 | 290 | 430 | 410 25 | 650 | 365 | 575 25 | 345 | 520 23 | 510 | 805 | 460 28 | 750 36 | 430 26 | 690 | | 10.0 | 445 27 | 615 28 | 395 24 | 540 24 | 365 | 490 21 | 535 | 740 35 | 475 29 | 30 | 430 26 | 600
26 | 740 | | 635 | i : | 570 | 775 38 | | 12.0 | 530 | 680
31 | 470 29 | 600 27 | 425 26 | 540 24 | 660 | 805 | 570
35 | 725 35 | 515 | 660 | 1 : | | 800 50 | 1 : | 710
44 | 845 | | 14.0 | 615 | 740 35 | 535 | 655 | 485 | 590 26 | 770 48 | 11 | 660 | 785 | 595 | 715 34 | 1 : | | 1 | 1 : | 840
51 | 11 | | 15.5 | 695 | 790 | 600 37 | 705 | 535 | 635 29 | 1 : | 1 : | 750 | 835
44 | 665 | 770
38 | 1 : | 1 1 | 1 : | 1 1 | 1 : | 1 1 | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top in each box indicates flow (LPM), and number on bottom indicates nozzle reaction (KG). (2) In Standard mode, the average nozzle pressure is 7 bar. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. ## MANGE 75/45 PSI STANDARD PRESSURE MODE **LOW PRESSURE MODE** Ш Ш STD LP Flow And Nozzle Reaction Chart | |) ft. | LP | 89
26 | 128 | 162 56 | 181 70 | 199 | 214 99 | , 0 | ó . | |---------------------|-------|-----|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | ш | 250 | STD | 45 | 60
25 | 97
44 | 146 67 | 189 | 215 | ·• • | , o | | HOSE | ff. | LP | 97 29 | 140 | 171
63 | 192 79 | 210 95 | , o | , o | ó
 | | | 200 | STD | 45 | 62
26 | 105
48 | 166 75 | 210 95 | , o | , 0 | ó
 | | 2 | ft. | LP | 84 25 | 155 53 | 182 71 | 204 89 | ·• • | , o ,o | , o | | | |
150 | STD | 45 15 | 64 27 | 122
56 | 203 | ·• • | , 0 | , 0 | ó | | | ft. | ďΠ | 67 19 | 101
30 | 123 40 | 145 48 | 162 57 | 175
66 | 188 76 | 199
85 | | HOSE | 250 | STD | 43 | 55
22 | 77
34 | 105 48 | 132
60 | 155 71 | 176
80 | 196
86 | | | ft. | dП | 74 21 | 110 34 | 136
45 | 159 55 | 174
66 | 189 | 202
87 | 214
98 | | 3/4" | 200 | STD | 44
15 | 57
23 | 82
37 | 118 54 | 148 68 | 175 79 | 201
88 | 214
98 | | | ft. | dП | 84 25 | 121 39 | 153 52 | 174 65 | 191 78 | 206 91 | 220 104 |
 | | _ | 150 | STD | 45 | 59 | 91 | 134
62 | 173 78 | 206
91 | 220 104 | : :: | | | ft. | ПР | 57
16 | 83 24 | 103
31 | 119 38 | 134 | 147
50 | 160 55 | 170
62 | | SE | 250 | STD | 42 | 51 | 68 | 86 | 106 | 124
57 | 140
64 | 155
71 | | H | H. | LP | 62 18 | 92 27 | 113 35 | 131 | 148 | 163 57 | 174 65 | 184 73 | | /2" | 200 | STD | 43 | 53 | 72
32 | 96
43 | 119 54 | 138 | 157 72 | 174 79 | | 1 1/2" HOS |) ft. | LP | 69 20 | 104 32 | 127 42 | 149 50 | 166 | 180 70 | 192 79 | 204 89 | | | 150 | STD | 43 | 55 | 78 | 108 50 | 136 | 162 73 | 183
82 | 204
90 | | NOIL
NOIL | | | 20 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | | FLOW (GPM) REACTION | | | (IS | d) 35 | INSS: | BBE | ARGE | ISCH' | O AN | IUG | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top in each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) in Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) 7 bar = STANDARD PRESSURE MODE LP = LOW PRESSURE MODE | FLOW (LPM) REACTION | | | 3.5 | 5.2 | 7.0 | 8.6 | 10.0 | 12.0 | 14.0 | 15.5 | |---------------------|-----|-------|-----------------|------------------|------------------|------------------|-----------------------|------------------|-----------------------|------------------| | ന | 45M | 5 bar | 1 63 | 208 | 295 | 409 23 | 515 29 | 613 | 693 | 772 | | 8 | M | LP | 261 | 394 | 481 | 564 23 | 628 27 | 681
32 | 727
36 | 772 40 | | E | 09 | 5 bar | 163 | 201 | 273 | 363 | 450 | 522 29 | 594 | 659 | | 38mm HOS | 60M | LP | 235
8 | 348 12 | 428 16 | 496 20 | 560 23 | 617 26 | 659 | 696 | | SE | 75 | 5 bar | 159
6 | 193 | 257 | 326 | 401 22 | 469 26 | 530 29 | 587
32 | | | 5M | LP | 216 7 | 314 | 390 | 450 | 507 20 | 556 23 | 606
25 | 643 28 | | 4 | 45M | 5 bar | 170
7 | 223 | 344 19 | 507 28 | 655 | 780 | 833 | 1 : | | 45mm | Z | LP | 318 | 458 | 579 24 | 659 | 723 | 780 | 833 | 1 1 | | E | M09 | 5 bar | 167 | 216 | 310 | 447 25 | 560 | 662 36 | 761 | 810 | | HOSE | Σ | ГР | 280 10 | 416 15 | 515 20 | 602 25 | 659 | 715 35 | 765 | 810 | | SE | 75M | 5 bar | 163 | 208 | 291 | 397 22 | 500 27 | 587
32 | 666 | 742 39 | | | Σ | LP | 254 | 382 | 466 | 549 22 | 613 | 662 30 | 712 34 | 753 | | 5 | 45M | 5 bar | 170
7 | 242 | 462 25 | 768 | ·• • | , o , | , o ,o | ,o | | 50mm | Σ | ГР | 318 | 587 24 | 689
32 | 772 40 | , 0 , 0 | ·O ·O | , 0 , 0 | , l | | Ε | 60M | 5 bar | 170
7 | 235 | 397 | 628 34 | 795 | , o | , o | ,o | | 9 | Σ | LP | 367 | 530 21 | 647 29 | 727
36 | 795 | , 0 | , 0 | , l | | HOSE | 75 | 5 bar | 170
7 | 227
11 | 367 20 | 553 30 | 715 39 | 814 45 | • • • | • | | | 75M | LP | 337 12 | 484 | 613 25 | 685
32 | 753 | 810 45 | ·• • | , 0 , 0 | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top in each box indicates flow (LPM), and number on bottom indicates nozzle reaction (KG). (2) in Standard mode, the average nozzle pressure is 7 bar. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. STD = STANDARD PRESSURE MODE LP = LOW PRESSURE MODE | | £. | Ъ | 97 33 | 184 | 242 103 | 279 130 | 306 156 | 329 182 | | | 11 | |-----------|-------------------|-------|--|------------------|-------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | HOSE | 250 | STD | 53 | 65 | 122 | 207 106 | 283 | 331 | 1: | 1: | | | | # | Ъ | 102 35 | 194 76 | 254 110 | 288 139 | 315 167 | 340 195 | 1 : | 1 : | | | 2 | 200 | STD | 53 | 65 | 128 | 223 115 | 312 | 340 | 1: | 1: | 1: | | 2 1/2" | ft. | Ъ | 107 37 | 206 | 265 119 | 299 | 326 179 | 1 : | 1: | 1 : | 11 | | | 150 | STD | 53 | 65 | 135 | 245 128 | 328
179 | 1 : | | i : | 1: | | | ft. | LP | 65
21 | 116 40 | 152 56 | 182 70 | 208 | 230 95 | 250 108 | 268 121 | 283 134 | | Щ | 250 | STD | 50 | 61 25 | 86
40 | 126
61 | 160
80 | 190 | 217
112 | 242
126 | 264 139 | | HOSI | Ħ | LP | 70 23 | 127 45 | 166 | 199 78 | 227 93 | 251 108 | 270 123 | 287 138 | 303 154 | | | 200 | STD | 51 | 62
26 | 91 | 136
67 | 176
89 | 210 108 | 240
125 | 268 141 | 293
155 | | 5 | ft. | ПР | 76
25 | 141
51 | 185 71 | 221
90 | 252 108 | 274
126 | 294
144 | 311
163 | 328
181 | | | 150 | STD | 51 | 63
27 | 99
74 | 152 76 | 198 101 | 238
124 | 273
144 | 307
163 | 329
181 | | | ff. | ГР | 53 | 88 | 116 40 | 138 50 | 157 58 | 175 66 | 190 74 | 205
81 | 218 89 | | HOSE | 250 | STD | 48 | 59 | 73 | 98 | 122 59 | 143
 | 162
81 | 179
91 | 195 | | HC |) #C | Ъ | 56 | 8 88 | 128 45 | 152 56 | 174
66 | 193 75 | 210
84 | 226 93 | 241 102 | | 4 | 200 | STD | 49 | 60 | 35 | 107 51 | 134
66 | 158 79 | 179
91 | 199 | 216 | | 3, | ft. | Ъ | 62
20 | 110
88 | 144
52 | 172 65 | 196
77 | 217
88 | 237 99 | 255 110 | 269 122 | | | 150 | STD | 50 | 61 | 8 8 8 | 119
58 | 151 75 | 1 79
91 | 204 105 | 227 117 | 248 129 | | | o ft. | Ъ | 47
14 | 72 24 | 94 | 112 39 | 128 45 | 142 51 | 154 57 | 166 62 | 177 67 | | 1/2" HOSE | 250 | STD | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 56 | 65 | 8 8 38 | 100 47 | 116 56 | 131
64 | 144 | 157
81 | | H | 200 ft | Ъ | 50 | 80 27 | 104 36 | 124 | 141
51 | 157 58 | 171
64 | 184 71 | 196 | | /2" | 20 | STD | 47 | 57 22 | 69 | 89 | 110 53 | 128 | 145 72 | 160 | 174
88 | | 1 | 0 ft. | Ъ | 54 | 9 | 811 ⁴ | 141
51 | 160 | 178
68 | 194 76 | 209 84 | 223
91 | | Ŀ | 150 | STD | 48 | 59 | 74 | 100
47 | 124
60 | 146
72 | 1 65 | 1 83 | 199 102 | | FLOW | (GPM)
REACTION | (LBS) | 20 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | | | REA | | (18 | 3d) E | BUS | SEE | GE F | AAH | DISC | MP | Nd | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top of each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) In Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. 7 bar = STANDARD PRESSURE MODE LP = LOW PRESSURE MODE | SE | 75M | 7 bar LP | 201 367
9 15 | 246 696 13 32 | 462 916 27 47 | 783 1056 48 59 | 1071 1158 68 71 |
1253 1245
83 83 | , | , | 1 | |-----------|---------------------|----------|-----------------|------------------------------|----------------------|-----------------------|------------------------|--------------------|------------------|--------------------|----------| | HOSE | 5 | LP | 386 | 734 234 | 961 20 | 1090
63 | 1192 1
76 | 1287 1
88 | , o ,o | , o ,o | ,o | | E | 60M | 7 bar | 201 | 246 | 484 | 844 52 | 1181 75 | 1287
88 | • | , o ,o | 1 | | 64mm | 45M | П | 405 | 780 | 1003 54 | 1132
68 | 1234 | , o ,o | , o ,o | , o ,o | ŀ | | | 45 | 7 bar | 201 | 246 | 511 | 927
58 | 1241
81 | , • | , 0, 0 | , • | ó | | | 75M | LP | 246 10 | 439 | 575 25 | 689
32 | 787 | 871 43 | 946 | 1014 55 | 1071 | | HOSE | 75 | 7 bar | 1 89 | 23. | 326
18 | 477 28 | 90 9 | 719 | 821 | 916 | 666 | | | 60M | LP | 265 | 481 20 | 628 | 753 | 859 | 950 | 1022 56 | 1014 1086
64 63 | 11091147 | | mu
m | 9 | 7 bar | 193
8 | 235 | 344 | 515 | 666 | 795 | 908 | | | | 50mm | 45M | <u>-</u> | 288 | 534 23 | 700 | 836 | 954 | 1037 57 | 3 1113 65 | 1177
74 | 1241 | | | 4 | 7 bar | 193
8 | 238 | 375 | 575 | 749 | 901 | 1033 65 | 11 62 | 1245 | | | 75M | <u>-</u> | 201
8 | 337 | 439 | 522 23 | 594 | 662 | 719 | 776 | 825 | | HOSE | 7 | 7 bar | 182 | 223 | 276 | 371 | 462 27 | 541 | 613 | 678 | 738 | | $ \Xi $ | 60M | П | 212
8 | 371 15 | 484
20 | 575 25 | 659 | 731 | 795 | 855 | 912 | | 틸 | 9 | 7 bar | 185 | 227 | 291 | 405 | 507 | 598 | 678 | 753 | 8 8 18 | | 45r | 45M | <u>-</u> | 235 | 416 | 545 24 | 651 | 742 | 821 | 897 | 965 | 1018 | | Ľ | 4 | 7 bar | 68 ∞ | 231 | 314 | 450 | 572 34 | 678
4 | 772 | 859 | 939 | | | 75M | LP | 178 6 | 273 | 356 | 424 | 484
20 | 537 23 | 583 | 628 28 | 670 | | ISC | _ | 7 bar | 170
6 | 212 | 246 | 310 | 379 | 439 | 496 | 545 | 594 | | 38mm HOSE | 60M | ر
ا | 189 | 303 | 394 | 469 | 534 23 | 594 | 647 29 | 696 | 742 | | E L | 9 | 7 bar | 178 | 216 | 261 | 337 | 416 24 | 484 | 549 | 909 | 629 | | 380 | 45M | r
LP | 204
8 | 344
4 ⁺ | 447 | 534 23 | 606 27 | 674 | 734
34 | 791 | 844 | | | | 7 bar | 182 | 223 | 280 | 379 | 469 | 553
33 | 625
38 | 693 | 753 | | FLOW | (I/min)
REACTION | (KG | 3.5 | 8d) = | 19US | 9.6 | 10.0 | ЯАН
25
0 | 14.0 | 15.5 | 17.0 | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. 1) Number on top of each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) In Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. STD = STANDARD PRESSURE MODE LP = LOW PRESSURE MODE | /2" HOSE | 200 ft 250 ft. | STD LP STD LP | 53 148 53 140 19 48 18 45 | 116 221 111 212 49 83 46 77 | 224 260 206 251 101 112 92 105 | 290 290 282 281 140 140 131 131 | 317 335 307 307 167 157 | 349 348 343 342 198 197 186 186 | 362 361 356 354 222 221 210 209 | 375 373 368 367 245 245 232 232 | ý ó 380 378 | |-----------|-------------------|---------------|---|---|---------------------------------------|--|--------------------------------|---|---|---|-------------| | 2 1/2" | 150 ft. | STD LP | 53 157 19 52 | 123 230 52 89 | 252 269 114 120 | 300 300 150 | 343 341 185 | 356 355 210 209 | 369 368 235 234 | , O , O | 1 | | Ä | 250 ft. | STD LP | 50 88 17 26 | 76 133 31 42 | 121 166
51 56 | 158 194 69 | 189 218 84 81 | 217 236 98 94 | 243 254 110 107 | 266 269 121 120 | 284 284 | | HOS | 200 ft | STD LP | 51 96 17 29 | 81 145 33 47 | 132 182 57 63 | 173 212 77 76 | 210 234 92 | 242 255 109 108 | 270 272 123 | 289 288 138 | 304 304 | | 5 | 150 ft. | STD LP | 51 107 18 33 | 88 162 36 54 | 148 203 64 72 | 197 232 88 90 | 239 256 108 | 276 276 127 | 295 295 145 | 312 313 163 | 329 336 | | HOSE | 250 ft. | STD LP | 48 70 15 20 | 63 101 25 30 | 93 126 38 39 | 119 147 50 48 | 141 165 61 55 | 160 182 70 63 | 178 197 79 70 | 195 211
87 77 | 210 223 | | /4" HO | 200 ft | STD LP | 49 75 16 22 | 67 112
26 34 | 103 139 44 | 131 162 56 54 | 156 182 68 63 | 178 201 79 71 | 198 217 88 80 | 216 231 97 90 | 234 244 | | 1 3/ | 150 ft. | STD LP | 50 84 17 25 | 73 126 29 39 | 115 157 48 52 | 149 183 64 63 | 177 206 78 74 | 203 225 91 86 | 227 241 102 98 | 249 257 113 109 | 269 271 | | SE | 250 ft. | STD LP | 45 60 14 16 | 58 82 22 24 | 77 103
31 31 | 98 120 40 37 | 115 135 48 | 130 148 56 48 | 144 160 62 53 | 157 172
68 58 | 169 182 | | 1/2" HOSE | 200 ft | STD LP | 47 65 18 | 60 91 23 27 | 85 114 35 35 | 108 133 45 | 124 149 54 48 | 144 164 62 55 | 160 178 70 61 | 174 190 77 66 | 188 202 | | 1 1/ | 150 ft. | STD LP | 48 71 16 20 | 64 104
25 31 | 96 130 39 41 | 122 151 52 49 | 145 170 63 57 | 165 187 72 65 | 183 202 81 72 | 200 216 89 80 | 216 229 | | FLOW | (GPM)
REACTION | (LBS) | ()
20 | S q) ∃ | aRU8
ទី | 125
125 | 3E P | Я А Н
Ё | 8
018C | MP 225 | No | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top of each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) In Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping. 7 bar = STANDARD PRESSURE MODE LP = LOW PRESSURE MODE | 正: | FLOW | (C) | 38m | 38mm HOSE | H | SE | | 4 | 45m | Ε | HOSE | SE | | | 50mm | E | H | HOSE | | 9 | 64mm | Ε | H | HOSE | | |---------------------|-----------------|------------------|---------------|------------------|-----------------|------------------|---------------|------------------|----------------|--------------------------|------------------|------------------|---------------|-------------------|--------------------|-------------------|------------------|------------------------|----------------|----------------|-----------------|------------------|------------------|-----------------|--------------------| | (I/min)
REACTION | (/min)
CTION | 45 | 45M |)9
 | M09 | 75M | Σ | 45M | Σ | 60M | Σ | 75M | Σ | 45M | Σ | 60M | 5 | 75M | <u> </u> | 45M | Σ | 60M | 5 | 75M | Σ | | - | (KG) | 5 bar | LP 7 bar | LP | 5 bar | LP | 5 bar | LP | | | 3.5 | 182 | 269 | 178
7 | 246
8 | 1 70
6 | 227 7 | 189 8 | 318 | 185 | 284 | 182
7 | 265 | 193
8 | 405 | 193
8 | 363 | 1 89 | 333 | 201 | 594 24 | 201 | 560 | 201
8 | 530 20 | | <u> </u> | 5.2 | 242
11 | 394 | 227 10 | 344 | 220 | 310 | 276 | 477 118 | 254 | 424 | 238 | 382 | 333 | 613 24 | 307 | 549 | 288
7-
4- | 503 | 466 | 87.1 40 | 439 | 836 | 420 21 | 802
35 | | | 7.0 | 363 | 492 | 322 | 431 | 291 | 390
4+ | 435 | 594 24 | 390 | 526 20 | 352 | 477 18 | 560 | 768 | 500 | 689 | 458 23 | 628 25 | 954 52 | 1018 54 | 848
46 | 984 51 | 780 | 950
48 | | SES | 9.6 | 462 24 | 572 23 | 409 20 | 503 | 37.1 | 454 | 564 | 693 | 496 25 | 613 24 | 450 23 | 556 22 | 746 | 878 | 655 | 802
35 | 598 | 734 | 1136
68 | 1136
68 | 1098
64 | 1098 | 1067 59 | 1064 59 | | | 10.0 | 549 29 | 643 27 | 481 24 | 564 | 435 22 | 511 | 670
35 | 780 34 | 590 | 689 29 | 534 28 | 625 25 | 905 | 969 | 795 | 886 42 | 715
38 | 825 37 | 1298
84 | 1291
84 | 1200 76
| 1268 78 | 1162
71 | 1162 71 | | | 12.0 | 625 | 708 | 545 28 | 621 25 | 492 25 | 560 22 | 768 | 852 39 | 674
36 | 761 32 | 606 | 689 29 | 1045 | 1045 58 | 916
49 | 965 | 821 | 893 | 1347 95 | 1344 95 | 1321 | 1317 | 1298 · 84 | 1294
84 | | DISC | 14.0 | 693 | 765 34 | 606
32 | 674 28 | 545
28 | 606 24 | 859 | 912 44 | 749 | 821
36 | 674
36 | 746 32 | 1117
66 | 1117
66 | 1022
56 | 1030 56 | 920 | 961 | 1397 1 | 1393 106 | 1370 | 1366 | 1347 95 | 1340
95 | | | 15.5 | 757 | 818 38 | 659
35 | 719 30 | 594
31 | 651 26 | 942 51 | 973 49 | 818 ⁴⁴ | 874 41 | 738 | 799 | 1181 74 | 11 85 | 1094
63 | 1090 | 1007 55 | 1018 54 | ⋄ • | , o , o | 1419 | 1412 1111 | 1393 105 | 1389
105 | | | 17.0 | 818
44 | 867 41 | 712 38 | 765 | 640 34 | 689 | 1018 56 | 1026 55 | 886 | 924 45 | 795 | 844 39 | 1245
82 | 1272 1151 1 | 1151
70 | 151 | 1075
09 | 1075 | , o | | 1 : | ,o | 1438 116 | 1431
116 | CAUTION: Changing to Low Pressure mode will typically increase nozzle reaction. (1) Number on top of each box indicates flow (GPM), and number on bottom indicates nozzle reaction (LBS). (2) In Standard mode, the average nozzle pressure is 100 PSI. (3) Flows may vary with brand or condition of hose. (4) Flows are approximate and do not reflect losses in preconnect piping ### 11.0 INSPECTION CHECKLIST Nozzle must be inspected for proper operation and function according to this checklist before each use. Check that: - 1) There is no obvious damage such as missing, broken or loose parts, damaged labels etc. - 2) Gasket grabber is free of debris. - 3) Coupling is tight and leak free. - 4) Valve operates freely through full range and regulates flow. - 5) "OFF" position does fully shut off and flow is stopped. - 6) Nozzle flow is adequate as indicated by pump pressure and nozzle reaction. - 7) Shaper turns freely and adjusts pattern through full range. - 8) Shaper turns into full flush and out of flush with normal flow and pressure restored. - 9) Standard/low pressure knob turns freely and changes nozzle pressure. Any Mid-Force, Dual-Force and CAFS-Force nozzle failing any part of the inspection checklist is warning unsafe and must have the problem corrected before use. Operating a nozzle that fails any of the above inspections is a misuse of this equipment.